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Task (i): Collaborative development of a circuit system that is capable of accepting an input pulse and 

converting it to the traveling solitary wave pulse seen in a granular alignment (Solitary Wave Chip 

Problem).  

 

The write up below describes our accomplishments in constructing a Simulink version of the granular 

chain. 

 

Simulink Modeling of Granular Chains (Robert W. Newcomb, Department of Electical and Computer 

Engineering, University of Maryland, College Park, Maryland 20742 USA (newcomb@eng.umd.edu)  

Surajit Sen, Physics Department, State Univesity of New York, Buffalo, New York, 14260 

(sen@buffalo.edu)) 

 

Abstract—After a review of the coupled Newton’s equations for a granular alignment, the equations are 

put into block diagrams of Simulink. Simulink simulations are given for 22 grain systems with cubic and 

for Hertz potential energy. The expected granular solitary waves are seen in the simulations.  

 

I. INTRODUCTION 

The types of grains under consideration comprise a one-dimensional chain of symmetric elastic grains 

such that an input pulse travels through compression along the chain. By experiment [1], [2], through 

simulations [3], and by series approximations [4], [5], the pulses are known to be able to form into solitary 

waves and since action potentials are solitary waves, these are similar to the signals used by biological 

neurons [6, p. 42] and of considerable interest for mimicking neural information processing.  Therefore, 

these grains can be seen as an alternate means of forming the pulses used in silicon based pulse coded 

neural networks [7]. Alternatively, their equations can be put into a form which allows for an equivalent 

transistor structure having the key properties of the elastic spherical grains. Consequently, with an ultimate 

goal of mimicking the grains behavior in transistor circuits, in this paper we present a Simulink model of 

these grains in a form that allows for future conversion into VLSI circuits. 

 

Figure1. Chain of grains of radii R placed between rigid walls. 

f-->

qiq=0 qN

......

q=2RN
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II. DESCRIBING EQUATIONS 

 Figure 1 gives a one-dimensional representation of the granular spheres which we here assume all have 

the same radius R. We consider N grains with qi being the coordinate of the center of the i
th
 grain. For i=1 

an external impulse-like force is assumed applied while for the final grain, at xN, a rigid wall is assumed. 

We use the Hamiltonian, H(p,q) representation where p = momentum N-vector and q = position N-vector 

and H is the sum of the kinetic and the potential, V(.,.), energies. Thus 
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Here qi is the position of the center of the i
th
 grain measured from an origin q1-R = 0. The potential 

energy depends on the overlap, 2R-(qi – qi-1), of two adjacent grains if positive (and is zero if there is no 

overlap). If the rest position is qio and the displaced position is xi = qi – qio then the overlap is xi-1-xi, which 

gives the potential energy V if positive with V being zero if there is no overlap. So, following [3] the 

modified symbol [x]+ = (x+|x|)/2=(1+sign(x))x/2 is used in (1) to designate x if x > 0 and zero if x < 0. The 

power r+1 is due to Hertz [8] and known to be 5/2 for elastic spheres though we simulate with other r as 

well [9]; especially r = 2 is convenient for analytic investigations. We set up the equations with r as a 

parameter which then becomes easy to change in Simulink. The mass of a grain is m and k comprises 

various constants including Young’s modulus. 

Simulionk realizations are most easily obtained through the state variable equations which in this case 

are the Hamilton differential equations.   
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By normalizations, the choice of xi, and introducing possible loss (by the parameter kloss) we recast 

these into the following state-variable form which are the actual ones we put into Simulink in the following 

paragraphs.                           
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Equations (3) are for i = 2, …, N while at i = 1 an additive input term, f(t), is to be added and the x0 term 

omitted while at i = N a fixed boundary is imposed by fixing xN+1 = (2N+1)R. However, since the 

differences of position hold, the xi can be interpreted as the incremental displacement of the center of the i
th
 

sphere. For solitary waves of velocity c we have xi(t) = u(xi-ct). Following normalizations of Chatterjee [3], 

this gives the second order differential equation for the solitary wave 

.r1)]u(t[u(t)ru(t)]1)[u(t
..
u

+
−−−

+
−+=                   (4) 

From these Chatterjee shows MatLab simulations indicating the existence of solitary waves while Sen & 

Manciu [4] give a series solution approximation. In detail, [5], with α = xi-ct and n a parameter. 

∑
∞

=

+
+=

−=

0q
.(5b)            

12q
(n)

12q
C

2
1n)),F(

(5a),                (n)))(Ftanh((1
2
An)),u(

αα

α α
                                        

The C2q+1 have been evaluated for q = 0,…,5 and the results shown to be solitary type waves (see Fig. 3.1 

of [5]). In short these grains are known to support solitary waves. 

Consequently we know that we can obtain solitary waves from the state variable equations (3) so it is to 

them we turn for possible transistor realization. Toward that we obtain next a suitable block diagram 

realization.  

 

III. SIMULINK BLOCK DIAGRAMS 

Although we simulate for much larger N, for convenience of illustration Fig. 2 shows a Simulink block 

diagram for N=5 stages of grains with the sub-blocks for i=2,3,4 being given in detail by Fig. 3 where we 

have allowed for different grain radii but choose R=0 for equal size grains and x as displacement around 

equilibrium (the choice of xi=qi is possible with nonzero R in this setup). The input, i=1,  and output, 

i=N=5, stages are given in Figs. 4 & 5. Figure 3 realizes equations (3) while the input and output stages, 

are simple modifications reflecting their different loading. In Fig. 2 an input pulse is applied on the left to 

the input stage.  
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Figure 2. Simulink 5 grains Simulink block connection  

 

 

Figure 3. Simulink i
th
 internal grain stage
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Figure 4. Detailed Simulink input grain, i=1, stage  

 

Figure 5. Detailed Simulink output grain stage, i=N 

 

IV. SIMULATION RESULTS 

Figure 6(at the end of the paper) gives a plot of dx/dt at the fourth and the 21
st
 stages for r=2 and m/k 

normalized to 1, showing solitary waves as well as their reflection from the N=22 end wall. For Fig. 6 a 

square input pulse of amplitude 10
-6

 and pulse width t=5x10. This results in a traveling wave of amplitude 

3.5x10
-9

 with a delay of t=2,500 at the 4
th
 grain, for r=2. A reflected wave can be seen at t=32,000 with the 

solitary pulse arriving at the 21
st
 grain at t=15,000, all in normalized time.  

 

V. DISCUSSION 

 For obtaining Simulink models we have put the grains differential equations into state variable 

form, (3) above. From these we are able to set up block diagrams which use only integrators, multipliers, 

square roots, and summers. These are conveniently put into Simulink through which we have again 

shown that solitary signals can be generated. In the case of grains satisfying the Hertz potentials these 

blocks necessitate square roots in obtaining the 3/2 power. However, from the simulations we obtain 
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similar results for powers of r=2 as well as 3/2, though with a different time scaling as for example the 4
th
 

stage peak occurs at t=200 for r = 3/2. We have normalized m/k=1 and considered xi as the change in  

displacement, but we can consider it alternatively as the absolute center position, qi, of the ith grain; we 

have chosen the former for the given block diagrams (which also use R=1 for the right wall). In the 

Simulink system we have the capability of Figure 6. Simulation result:for r=2; solid line dx/dt at 4
th
grain ; 

dashed line dx/dt at 21
st
 grain both for N=22 grain using any real r as well as the added possibility of 

including loss, though it is not present in the basic grains equations. The above can be generalized to 

allow for different radii and for different materials of different individual grains within the system, and 

this is allowed for by separate ports in the individual grain cell blocks.  

Some useful additional references are included [10-20]. For example, there are other effects which can be 

included, one of which uses the “coefficient of restitution” [11], while generalization to higher 

dimensions is possible, such as for sand at the beach. Also the above equations are normalized though 

denormalization is easily carried out. ([20]] gives material constants for various materials). 
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Task (ii): Developing a heterogeneous granular alignment system that can compress or dilate propagating 

solitary waves (Solitary Wave Width Control Problem).  

------------------------------------------------------------------------------------------------------------------------  

Width of the Solitary wave in granular alignments (Diankang Sun, Yoichi Takato, Nicholas DeMeglio 

and Surajit Sen, SUNY Buffalo) 

Solitary waves (we denote solitary wave as SW throughout) that are about 5 grain diameters wide 

naturally form in a chain of unloaded elastic spheres that repel with overlap  as 

,0,)( 1,1, ≥= ++ δδδ n

iiii aV  where for spheres n = 5/2.[Nesterenko 1983, Lazaridi and Nesterenko 1985, 

Sen and Manciu 2001, Sokolow, et al, 2007, Sen, et al, 2008] For 2→n  and ∞→n , a one-sided 

harmonic 1D chain of cylindrical or disk shaped beads and a chain of particles with hard-sphere-like 

repulsion are approached respectively.  It is known that for n > 2 an impulse propagates in these systems 

as solitary waves [Nesterenko 1983, LN 1985, Sen et al, 2008] The width W of these solitary waves are 

known to depend only upon n but a detailed understanding of ( )nW  has not been available. Here we use 

numerical and analytical methods to study how the SW width depends on n. In the numerical study, a 

geometric tool is employed to calculate the total time averaged kinetic energy of the SW by using the 

virial Theorem.  The idea is to construct an isosceles triangle area such that its area equals that of the SW. 

Hence the base of the triangle gives the width of the SW. We then analytically explore the width of the 

SW. Here we present the results of a detailed computational and theoretical study to propose, 

( ) ( ) α−−∝ 2nnW  , where 3/1≈α .  

Introduction 

Now consider an alignment of elastic grains that are held between fixed, rigid walls that would perfectly 

reflect energy. The grain-grain potential is described for convenience as 

,0,)( 1,1, ≥= ++ δδδ n

iinii aV                                                                (1) 
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where ( )1;1;2,2
)1(21
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n σ
 and is a constant given by the material and 

the geometric properties of the grain, Y and  are the Young’s modulus and Poisson’s ratio, and 

denotes the overlap of two adjacent grains. 

     We start by considering the equation of motion of a bead in the chain, 

     [ ] [ ]{ }1
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)()()()(
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iii

n
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i tutututuna
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where i is the pre-compression effected on the grain in the chain. Sound propagation is not admissible 

when there is no preloading, i.e., when 0=∆ i . This is because when n > 2, the right hand side (RHS) of 

the equation cannot be Taylor expanded. So there is no quadratic term that is admissible on the RHS, 

which implies that there are no harmonic oscillations [Nesterenko, 1983, Nesterenko, 1985, Chatterjee, 

Sen, 1999, 2001]. Hence no sound propagation is possible. iu  denotes the displacement of the grain i from 

its equilibrium position. High-precision numerical studies show that the discrete chain systems admit 

robust solitary waves propagating through the chain with a unique wave width. These studies also reveal 

that the wave width depends only on n (Manciu et al, 1999a). A perturbation that is sufficiently weak such 

that only elastic compressions of grains are involved results in the eventual formation of a solitary wave 

(SW) as discussed in Sokolow et al 2007.  

      Earlier work of  Nesterenko has claimed using continuum theory that 

6

)1(

2

2 −

−
=

nn

n

R
W

π
  .                                                        (3)  

So, when n→2,   W→∞ (no SW). This is an expected result because n = 2 is the acoustic case. When 

n→∞, W ≈ 2R, which is the extreme hard sphere limit when W shrinks to its minimum. 

     Earlier numerical study using exhaustive dynamical simulations (see Fig. 4 of Manciu, Sen and Hurd, 

1999) suggest that Nesterenko’s formula for W may need some improvement. 
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The correction is important because the width formula is sometimes used to find the effective “n” in the 

experiments. Hence this formula is potentially useful in designing granular meta-materials (Daraio, 

private communication). 

Numerical study 

We carried out our simulations by setting the masses of the grains 
210314.2 −×=m kg, n = set of values 

from 2.001 to 7.0, potential prefactor a = 52.442 N/mm
1.5

 for all n’s. Although an depends on n as we 

have seen in Sun, Daraio and Sen, Phys. Rev. E 83, 066605 (2011), the reason we can use one constant is 

because each run is independent of the other such that the underlying physics does not change. Further, 

since we expect W to depend on “n”, the choice of the value of an is a matter of convenience. We also set 

 = 0 so there are no harmonic terms. We used the velocity Verlet algorithm for integrating the coupled 

equations of motion. The integration time step was taken to be t = 10
-5

 s. In the simulation a delta 

function perturbation with JmvEtot 115715.0
2

1 2

0 ==  was initiated at grain 1 at t=0. We set 

dissipation to zero. Energy was constant through the 10
6
 steps of our simulations to one part in 10

6
. 

     We observed the formation of a single solitary wave  a results first reported by Sokolow et al. 

(Sokolow 2007). Snapshots of a propagating SW at two different times are shown below in Fig. 1, where 

KE of the grains vs. grain positions are shown for a propagating SW at two different times. The center 

grain is well defined when the wave consists of an odd number of grains whereas the center is roughly at 

the edges of the two center grains for a SW sitting on an even number of grains. Nevertheless, the total 

energy does not disperse even though the SW oscillates between the two widths. To choose either an odd 

or an even numbered wave width to be the solitary wave width is then a choice of definition. See Fig. 1. 

we have chosen the odd numbered solitary wave width to represent the width here.  
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Fig. 1. Solitary wave is traveling with a characteristic fluctuation in width. 

     

        

 

         Fig. 1 shows that the width of the SW, i.e., the number of grains that a propagating SW sits on, 

varies slightly and so does the SW amplitude. This makes sense because in a particulate system there 

would be time periods in which the grains will get more compressed and when they would be less 

compressed against each other. Increased compression would mean high potential energy whereas smaller 

compression would mean high kinetic energy. This is the reason why the SW height and spatial extent 

varies in the KE vs. grain number snapshots in Fig. 1. Thus we focus on the average width of the SW, and 

our )(
1

1

tW
N

W i

N

i

∑
=

≡ , where N is total number of discrete sampling times. Since the width varies with 

time, we may also define the width of the SW as  dttW
tt

W

t

t

)(
1 2

1
12

∫−
≡ . 

 Numerical results show that as the exponent n decreases (but still greater than 2) the wave hump tends to 

flatten out, i.e., the width of the SW increases (see Fig. 2). In our numerical studies we choose to keep the 

total energy of the system and hence of the SW to be the same in every case we examine. The kinetic and 

the potential energies of the solitary wave then end up being related by the Virial theorem. 

     The Virial Theorem is generally valid for classical energy conserved systems. Virial Theorem 

[Goldstein, 2002] says that 
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∑ ∑ >⋅
∂
∂

<−>=⋅<−>=<
i i

i

i

ii x
x

V
rFKE

2

1

2

1
 ,                                         (4) 

where iF is the force on particle i located at ir and < > signifies a time average. 

     In the granular alignment, 

( )n

ii

n uuV 1~~ +−δ , 

and for for generalized Hertz-type potentials 

,
2

totE
n

n
KE

+
=  and ,

2

2
totE

n
PE

+
=                                        (5) 

and these two results have been confirmed by all of our simulations ( see Fig. 1* below). 

 

Fig..1*  KE and PE vs. time for different n’s: 2.05, 2.5, 3.0, 4.0 and 5.0 from left to right. 

     Now kinetic energy can be determined as a function of n, if totE  of the system is known. Hence the 

descriptions, including the width, of the SW can be fully obtained through the numerical studies of the 

system. However, as we shall see, the relation of the SW width to its kinetic energy is not trivial to 

determine 

Etot, KE and PE vs. time
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Fig. 2   Some numerical results of the numerical solutions to the equations of motion showing the velocity 

of the solitary waves for different magnitudes of n. The bigger the n is, the narrower the solitary wave is. 

       

      It is difficult to exactly define the width W of a SW. In experiments and in simulations, the width is 

related to the accuracy with which measurement is possible. In continuum theory the width may diverge. 

Our calculations show that the grain-grain distance between the grains inside a solitary wave may differ 

by as many as six decades. It is hence necessary to introduce a reasonable cut-off in some appropriate 

parameter (displacement or velocity say) to precisely define W. 

      We in the following present the detailed steps for calculating the width W. The method involves the 

symmetry property of SW. It says a SW shape is line-symmetric about its center, see Fig. 3. The vertical 

axis represents the velocity squared of each grain involved in the SW. 
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Fig.3. Sketch of the SW being replaced by the isosceles triangle. Panel A illustrates that 

231 AreaAreaArea =+  where Area3 is very small compared with total area of the triangle. One can 

always construct such an isosceles triangle whose area is equal to that under the solitary wave curve.  

       

             Virial Theorem (Eq. (5)) allows us to write 

Area of the triangle x m/2 = KE total = n E total / (n+2),                           (6) 

 

where m is the mass of each grain. 

Expressed now in 2-D coordinates x-y, the area of the triangle is (see Fig. 3-panel B) 

2

max

2

max
4

1
)

2

1
(

2

1
BmvmvBA ==  ,                                                              (7) 

which is the total kinetic energy of the solitary wave, i.e. 

∑∑
−=

∞

−∞=

≈==
2

2

222

max
2

1

2

1

4

1

W

W
i

ii

i

mvmvKEBmv ,                                                   (8)                                         
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where 1+=WB .   Making use of equation (4) and the definition of 1+=WB , we have the width 

expression, 

1
2

4
2

max

−








+
=

mv

E

n

n
W tot

.                                                             (9) 

Eq. (9) allows us to find the width of a SW for a given index n; the known total energy of the system, and 

the center grain’s velocity (which is the maximum velocity) as obtained from the numerical solutions.  

       Recall that the total energy of the system is 
2

0
2

1
mvEtot = , where v0 is the initial velocity imparted to 

the first grain at t = 0, therefore one can also write the width equation in terms of  v0 as follows 

1
2

2
2

max

2

0 −










+
=

v

v

n

n
W .                                                       (10) 

Eq. (10) provides the relation between the SW width and the power law potential exponent n given the 

initial impulse velocity v0 and the maximum velocity vmax of the center grain of the grains that carry the 

SW.   

       Once v max is known from the numerical simulation result, the width of the SW for a given potential 

component n can be obtained. This process can be repeated indefinitely until all studies of widths for 

different magnitudes of n are completed. The width depends upon the magnitude of exponent n in the 

following way: 1, →∞→ Wn , i.e., rigid hard potential limit; and 2→n , solitary wave breaks down, 

i.e., harmonic potential limit.  

      Our exhaustive numerical studies (see Fig. 4) of such physical systems have shown that the width 

depends solely upon the potential exponent n, and is consistent with a scaling law, 

( ) 120 +−= −α
nAW ,                                                         (11)                                                        

in which num= 0.3301, and the pre-factor A0=4.5262. A0 is a constant that only depends on the cutoff 

threshold energy. We studied W for various n values. Our simulations confirm that ( ) 3301.0
2

−−∝ nW or 
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( ) 3/1
2

−−∝ nW  where the index 1/3 is approximate. We are unable to further clarify whether the actual 

index is 1/3 or not. 
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Fig.4. We show a ln-ln plot of W-1 vs. n-2. The width W depends on n as: ( ) 125262.4
3/1 +−= −

nW  

Analytical Study 

    In 2001, Sen and Manciu proposed a series solution for the equation of motion. The solution is as 

follows: 

( ) ( ) ( ) ( )αφα niii Auctzutzutu ≡≡−== ,)(                                         (12) 

where ,ctz −≡α  c = velocity of SW. Then we define 

( ) ( )[ ] ( ) ( )








−=+=

2
tanh    ,1

2

α
αφαφα n

nn

fA
u                                       (13) 

and 
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( ) ( ) ctzzznczf q

q

q

n −== +
+

∞

=
∑ '   where,'' 12

12

0

                                           (14) 

So knowledge of c 2q+1 (n) solves u (z-ct) which reveals the displacement of every grain within the SW 

and hence solves the equation of motion. ( )ctzu −
o

 can hence be found and <KE> and <PE> can in 

principle be obtained. The following table lists the constants C 1~5 for different n values [Sen 2001]. The 

constant 
2

2

0

2

−









=

n

n

A
na

mc
C , where a is from Eq. (1). 

Table 1  Coefficients C values for different n’s 

  n=2.2 2.35 2.5 3.0 4.0 5.0 

C0 0.8709 0.6908 0.85852 0.9445 1.3323 2.0517 

C1 1.643 2.3171 2.3953 3.0168 3.5646 3.79001 

C3 0.08223 0.2364 0.26852 0.5971 1.331 2.177 

C5 0.000326 0.003407 0.006134 0.0376 0.0676 0.0665 

 

        In the following we report analytical results of SW widths dependence on n and how we construct an 

analytical expression of this SW. 

        We will now analytically obtain the average potential energy <PE> of the SW. The displacement of 

involved grains from equilibrium positions has the form [Sen 2001], 

( ) ( )iin tzfiii
e

tzu
−+

=−
1

1
,                                                           (15)                                                          

where ( ) ∑
∞

=

+
+ −=−

0

12

12 ))((
q

q

iiqiin tznCtzf is a controlling factor containing all the information of this 

type of solitary wave, and iz  [ = ±±±W- 1) / 2  ] denotes discrete 

dimensionless coordinate recording the grain number, it is a characteristic time, i.e., 
0t

t
t real

i =  ( ≡0t time 

for solitary wave to travel one grain diameter) which is not necessary to be discrete. Knowledge of the 

coefficients ,,,,, 5310 ⋅⋅⋅CCCC [6] will completely solve the problem of pulse propagation for any system 



 

19 

 

supporting this type of SW. One must resort to numerical methods for computing these coefficients. For a 

certain time ti, say 0 for convenience we choose )( ii zu to be centered at the origin so, 

( ) ( )in zfii
e

zu
+

=
1

1
,                                                               (16)                                                             

which leads to the overlap of i,i+1 of two adjacent grains, 

)()( 111, +++ −= iiiiii zuzuδ                                                      (17)                                                      

Hence the potential energy is, 

∑ ∑
∞

−∞= −=
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i
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1,1, δδ ,                                     (18)                                                   
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The kinetic energy of the SW likewise can be found as follows,  

( ) ( )in tfii
e

tu
−+

=
1

1
 , (note that f n is an odd function)                        (19) 

which gives, 
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( ) ( ) ( )
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      .                        (20)                                        

Therefore the kinetic energy is, 

2
2/

2/

2

22
i
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Wii

i v
m

v
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−=

∞

−∞=

≈= ,                                                           (21)  

where m is set to be unity.       
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Fig.5  The figure is showing the relative displacement of each bead in a solitary wave, and the 

compressions (overlaps) of pairs of neighboring beads which constitute a compression solitary wave.  

 

        With the knowledge of coefficients ,,,, 531 ⋅⋅⋅CCC to desired accuracy, the SWs potential and kinetic 

energies can thus be calculated for all various n values. Hence the widths have been determined. The 

accuracy in our studies is to one part in 10
20

. We calculated 8 data sets of 1, +iiδ  at different times to get <

1, +iiδ > shown in Table 2 below. 
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Table 2.  Relative displacements for different n values 

< 1, +iiδ > 

(au) n =2.2 n =2.35 n =2.5 n =3.0 n =4.0 n =5.0 z 

 0 3.2449E-23 7.88E-29 1.011E-90 1.8E-172 2.167E-217 -6 

 5.18961E-06 7.7427E-13 4.44E-15 2.764E-39 5.62E-74 2.1527E-97 -5 

 0.000719994 7.0716E-07 1.21E-07 1.26E-15 4.12E-28 3.2861E-38 -4 

 0.018086981 0.0013119 0.000796 6.061E-06 2.19E-09 1.6602E-12 -3 

 0.132344218 0.07065122 0.063974 0.0252896 0.006942 0.00239133 -2 

 0.348843614 0.42803616 0.43523 0.4747043 0.493058 0.49760867 -1 

 0.348843614 0.42803616 0.43523 0.4747043 0.493058 0.49760867 0 

 0.132344262 0.07065122 0.063974 0.0252896 0.006942 0.00239133 1 

 0.018086937 0.0013119 0.000796 6.061E-06 2.19E-09 1.6603E-12 2 

 0.000719995 7.0716E-07 1.21E-07 1.258E-15 4.12E-28 3.2861E-38 3 

 5.18942E-06 7.7434E-13 4.44E-15 2.764E-39 5.62E-74 2.1527E-97 4 

 0 3.2449E-23 7.88E-29 1.011E-90 1.8E-172 2.167E-217 5 

width 9 7.8 7 5.8 4.6 4.4   

 

To ensure the width found by the guidance of cutoff ratio of 
8

max 10/ −<δδ tail  is correct, W must also 

satisfy the following relations 

,
2
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n
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
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=><   and    totW
E

n
PE 




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


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2
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2

n

PE

KE
=

><
><

            (22) 

The following table lists the KE, PE and Etot for different n values. 

Table 3.  KE and PE for different n values 

         n 2.2 2.35 2.5 3 4 5 

<KE> (arb.u) 

0.29131754

3 0.52372503 

0.96139851

8 

1.34954430

3 

2.09294106

5 

2.42609335

9 

expected 

<KE>/<PE> 1.1 1.175 1.25 1.5 2 2.5 

<PE> (arb.u ) 

0.26546468

7 0.44678467 0.77095005 

0.90083918

4 

1.04896212

9 

0.97274790

9 

calculated 

<KE>/<PE> 

1.09738717

3 1.17220903 

1.24703087

9 

1.49809680

4 

1.99524940

6 

2.49406175

8 

Etot (arb.u) 0.55678223 0.9705097 

1.73234856

8 

2.25038348

7 

3.14190319

5 

3.39884126

7 

Prefactor(arb.u

) 

0.20872971

4 0.22953622 0.528041 

4.20465836

2 

0.47439964

9 

0.51389658

6 
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It is clearly seen that the Eqs. (22) are satisfied closely. The plot of expected <KE>/<PE> vs. calculated 

<KE>/<PE> shows the same agreement (see Fig. 6) 

 

Fig. 6.  Both calculated and expected <KE>/<PE> match closely vs. different n’s. 

 

It turns out that (see the plot of W vs. n shown in Fig..7) dependence of W on n is 

1)2(745.4 3307.0 +−= −nW ,                                                     (22) 

which agrees with the results obtained by the numerical approach.  

The solution is approximate because ⋅⋅⋅,,, 531 CCC  used is an infinite series.  

<KE>/<PE> vs. n

Expected:  y = 0.4988x + 0.0004

R2 = 1

Calculated:  y = 0.5x

R2 = 1
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Fig.7.  The widths of PE SW being calculated and plotted against n. The ln-ln plot of W-1 vs. n-2 shows 

the width: 1)2(745.4 3307.0 +−= −nW , which provides a good agreement with the scaling law.   

 

Fig.8. Analytical results of SWs (potential type) for set of different potential exponents. 
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Fig.9. Log scale potential type SWs for set of different potential exponents. 

Summary  

To summarize this work, we conclude that the width of the SW in granular media exhibits an intrinsic 

power law dependence on the potential exponent n, i.e., ( ) 12
3/1 +−∝ −

nW . We have obtained 

agreement between the numerically and theoretically obtained values of this exponent. In monodispersed 

chains, n is the only parameter that controls the width of the SW.  The physical meaning of the scaling 

law indicates that the width of the SW decreases much faster than the increase of the exponent n which is 

solely due to the nature of power law form of the potential.  Therefore, when n increases, the energy 

transfer from one grain to the next becomes a progressively faster process. Such energy transfer tends to 

happen as a “one-shot deal”. The exponent in scaling law (-1/3) must hence be greater then – 1 and less 

than zero. 
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Task (iii): In recent work using compressed granular alignments using reflective walls we have shown 

that there exists a critical loading where solitary waves and acoustic waves can coexist with the kinetic 

energy of the solitary wave being slightly larger than the average kinetic energy of the acoustic waves. 

Here we will attempt to develop a system where the solitary wave can be submerged under the noise by 

suitably modifying the system Hamiltonian in such a way that the added noise will not modify the 

coexisting phase (Submerged Solitary Wave Problem).  

 

We came to understand that the real challenge was to make a stable solitary wave within the 

quasi-equilibrium phase and this is what is accomplished below. This work extends earlier work which 

hinted at a stable solitary wave in the quasi-equilibrium phase at critical loading where the harmonic and 

nonlinear forces are equally strong competitors. The work suggests that at such critical strengths, 

combination of nonlinear and linear forces can lead to unexpected nonlinear structures. The solitary wave 

can be submerged within noise without decay but this is not possible to do by using a single Hamiltonian. 

We present below in details our work on these stable solitary waves in the highly noisy quasi-equilibrium 

phase. 

 

Long lived solitary wave in a 1D granular chain (Yoichi Takato, Edgar Avalos, Surajit Sen, SUNY 

Buffalo) 

Abstract - Kinetic energy uctuations of a non-dissipative 1D granular chain held between 

perfectly reecting walls with various precompressions are numerically investigated. The dynamics of the 

system is explored for three cases, (i) for a weakly precompressed chain which admits only solitary waves 

that break down into secondary waves under wall collisions, which is consistent with other _ndings in the 

literature, (ii) for a strongly precompressed chain which exhibits mostly acoustic waves, and (iii) for a 

chain with intermediate precompression. Case (iii) accommodates a nearly stable solitary wave that 

travels unaffected through the acoustic waves and bounces back and forth between the walls for 

extremely long times. 

 

Nesterenko was the first to report the existence of a traveling solitary wave (SW), i.e., a non-dispersive 

bundle of energy, in a 1D granular chain [1]. Since then, many theoretical and experimental studies on 

SWs have been carried out [2-4]. These studies have shed light on the intriguing characteristics of SWs in 

granular chains where grains repel via the strongly nonlinear Hertz potential [5]. One of the properties of 

SWs that was shown by computational simulations is as follows: a SW created out of _ function 
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perturbation to an edge grain of a chain breaks down into small secondary SWs due to interactions with 

walls or other SWs [6]. Although the secondary SWs carry much lower energy compared to the initial 

SW, they were experimentally found by Job et al. [4]. This breakdown of SWs eventually leads the chain 

to an interesting state as we shall see below. 

 Suppose that only one SW is created by a single initial impulse in the system. Now imagine that 

through wall collisions and collisions with one another many secondary SWs are born out of the single 

original SW. One would expect that eventually the chain will reach a state that will be full of secondary or 

low energy SWs. In this state, the secondary SWs will continue to exchange energy with one another via 

collisions. Energy conservation demands that eventually the secondary SWs will break down and reform 

at the same rate in the system. One may think that this is an equilibrium state by analogy with the 

equilibrium state of a spring-mass system whose potential is described by a harmonic potential. However, 

it turns out that the actual situation is quite different. For instance, the velocity distribution in this state is 

a Gaussian, whereas the equipartition theorem does not hold [7]. Further, in some cases the system's 

evolution appears to have no memory of the initial conditions whereas in others they do. In addition, 

when one investigates the fluctuations in kinetic energy for the Hertzian system in the equilibrium-like 

state one finds that the fluctuations are larger than those for a harmonic system [7]. The conclusion - this 

state is not the same as the equilibrium state in a harmonic chain. Therefore, this state was named as the 

quasi-equilibrium state to distinguish it from the ordinary equilibrium state [7, 8]. 

 The dynamics of anharmonic systems has fundamental differences with respect to those of 

harmonic systems [9]. In particular, the Hertzian system has an important property which comes from the 

discreteness of the system; the weakly compressed system does not allow acoustic waves to propagate, 

these systems have been referred to as being in sonic vacuum [1]. On the contrary, the precompressed 

chain can admit acoustic waves [10] and strong precompression may suppress the nonlinearity and lead to 

a state with equipartitioned energy in the system like in a typical harmonic system. The role of 

intermediate precompression in the Hertzian system is not well understood. 

 In this paper we present our numerical study of kinetic energy fluctuations of a finite 

nondissipative linear chain made of Hertzian grains with precompression. The precompression ranges 

from weak enough so as to achieve sonic vacuum to strong enough so as to have acoustic waves in the 

system. We present evidence to show the existence of a striking long-lived SW at intermediate 

precompression. 

 Model and Method: We consider a 1D chain composed of N monodispersed spherical grains of 

radius R with rigid walls at both ends of the chain. These grains are barely in contact with one another at 

zero precompression. When two adjacent spherical grains are compressed, the repulsive potential is 

described by the Hertz potential [5], 
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����,���� = 
���,���
� 		(��,��� > 0

0									(��ℎ������)  (1) 

 

where � = 5/2 and ��,��� = 2� − ( ��� −  �) is the overlap between grain � and � + 1 and  �,  ��� 

describe the positions of the centers of grain � and � + 1, respectively. The prefactor � is given by 

� = (2/5#)$�/2 , where # is determined by the grain’s material properties; Poisson ratio % and 

Young’s modulus &	give # = 3(1 − %()/2&. If the separation of two neighboring grains is greater than 

2R, they do not have physical contact and hence no force acts on the grains. For this study we set 

� = 4.136 × 10-N/m
3/2 

and � = 0.5mm. This value of � corresponds to materials such as glasses. 

 The Hamiltonian is described by 

. = ∑ 012
(3+ ∑ ����,����,4�5�4�5�     (2) 

where 6� is the momentum of grain �, 7 is the mass of a grain and �(��,���) is the potential energy fue to 

the overlap. The equation of motion of grain � which is not next to a wall is given by 

7 8291			
8:2 = ��{<∆ +  �>� −  �?�>� − <∆ +  � −  ���?�>� (3), 

where the symbols are as defined above and ∆ is the precompression. 

 A velocity perturbation is given to one end of the chain at t = 0 and it eventually develops into a 

traveling SW. The impact velocity is set to be @�30 = 9.899 × 10>( m/s for all cases studied here. We 

solve the equation of motion using the velocity Verlet algorithm. The integration time step is ∆� = 10>Cs.  

 Now, we define a time averaged fluctuation of the kinetic energy T of the chain as [7] 

< E(�) >≡ ∑ |H1(:)>IHJ|
4∆K

4∆K∆: ,         (4) 

where L�(�)is the instantaneous kinetic energy of the chain, < L >	is the average kinetic energy at � → ∞, 

,N∆t is the total number of time steps, and E�(�) is the instantaneous fluctuation of the kinetic energy. 

 Fluctuations of kinetic energy of a granular chain: We investigate how kinetic energy fluctuations 

behave as the precompression applied to the chain is varied for three different system sizes N = 50; 100, 

and 500.Fig. 1 shows the kinetic energy fluctuations obtained by our simulations. In each system size, the 

fluctuation is normalized by the value of the fluctuation at no precompression. In addition, the 

precompression ∆ is nondimensionalized by grain radius R = 0:5 mm.  
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There are two distinct states at high and low precompressions in _g. 1. At the highest and lowest 

precompressions the fluctuations are almost at, however, the levels of the fluctuations are different in the 

two cases. The fluctuation for low precompression is 20% larger than that for high precompression and 

hence shows a clear difference between the two states. This is consistent with the results reported by Sen 

[7] that quasi-equilibrium state achieved in a weakly precompressed chain in small systems has more 

fluctuations by 12{27% compared to the equilibrium state. The equilibrium state corresponds to the state 

established in the strongly precompressed chain which allows mostly acoustic wave propagation. 
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 Another common feature to all the panels in fig. 1 is that the uctuations possess a broad peak at an 

intermediate precompression regime between 10
-4 

and 10
-2

. Our simulation suggests that this broad peak 

in the fluctuations has to do with the fact that the fluctuations are yet to reach a steady state during the 

calculation of the fluctuations. Further, the inability to reach a steady state is because the kinetic energy at 

the precompression  of interest changes extremely slowly in time. This is confirmed in Fig. 2, which 

shows an exponent O such that max {L�(�)P ∝ �>R. The maximum kinetic energy of the weakly 

compressed chain, which should be attributed to the initial solitary wave, decays very quickly, and its 

decay rate does not depend on the precompression, as shown in Fig. 2 as a large value that remains fixed 

for ∆< 2 × 10>S. By contrast, the maximum kinetic energy of the chain with intermediate 

precompression decays slowly, and the rate becomes smaller with the increasing precompression 

around2 × 10>S < ∆< 1.5 × 10>(. (see the negative slope in fig. 2). It indicates that uctuations of the 

kinetic energy at intermediate precompression could possibly be altered if the runs were even longer. 

Otherwise the fluctuation for each system size may converge to the smooth solid line shown in fig. 1, 

which is obtained using points not belonging to the peak. To run until convergence of the fluctuations, 

however, costs too much time as the exponent values show. For ∆= 9 × 10>S, we ran the simulations 

about thirty times longer (a month in real time) than those for weakly compressed cases. Finally, for the 

strongly compressed chain, the exponent → ∞ because an initial solitary wave which causes large 

uctuations may not exist. The system reaches a steady state at the very beginning of the runs, which will 

be presented below in fig. 3(e), and the average maximum kinetic energy remains unchanged in time. 

 So far, we have looked at the kinetic energy fluctuations of the system in the presence of 

precompression. The results, large fluctuations are seen for low precompression and small fluctuations are 

found for high precompression. These findings are not surprising because of the properties of the solitary 

waves in question. These waves break down into smaller waves and eventually form a steady state, which 
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leads to the quasi-equilibrium state for low precompression and at large precompressions the acoustic 

waves dominate, and these lead to the system being in a state with equipartitioned energy. What is 

unexpected is the odd slowing down of the system towards a steady state. This form of behavior is 

reminiscent of critical slowing down in systems undergoing phase transition [11] and we focus on this 

intriguing behavior below. 

 

 A space-time plot of kinetic energy shown in gray scale (a “zigzag" plot) helps us easily visualize 

traveling SWs or acoustic waves in the chain in order to explore where the decay rate difference comes 

from. The darker spots in the plot represent higher kinetic energy. Such a spot may display a bundle of 

kinetic energy moving through the chain or how kinetic energy spreads in the chain. A SW, a bundle of 

kinetic energy, is shown as a sharp line in the zigzag plot. If a SW propagates from one end of the chain 

to the other end, the plot shows a straight line with a certain slope, which is the velocity of the SW. If 

kinetic energy is equally distributed, i.e., an equilibrium state is established, the plot shows a uniform 

gray pattern. The time shown in fig. 3 is normalized by the period of a harmonic oscillator �TUV3 =
2W$7/X, where X	is the spring constant obtained by letting X = YZ([ � with ��,��� = �. 
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Upon investigating the zigzag plots for the entire precompression window for an N = 500 system, we find 

that the patterns in the plots can be classified into three distinct types as shown in fig. 3. Fig. 3(a) and (b) 

represent precompression of∆\ 2 × 10>Z (corresponding to weak precompression), fig. 3(c) and (d) 

represent 2 × 10>S \ ∆\ 10>( (corresponding to intermediate precompression), and fig. 3(e) and (f) 

represent ∆] 10>( (corresponding to strong precompression). A zigzag plot for the weakly compressed 

chain in fig. 3(a) shows that a clear initial SW depicted by a thin solid line at the beginning (� < 300) 

travels in the chain; it starts to decay shortly after � = 300; it decays quickly, breaking down to secondary 

SWs around � = 500. In the case of the strongly compressed chain, the zigzag plot is drawn in fig. 3(e). It 

exhibits the behavior that is characteristic of that of sound waves. The initial perturbation spreads into the 

chain, and more than half of the grains in the chain have some kinetic energy by the time the wave front 

reaches the opposite wall. Therefore, it cannot be a SW. Moreover, at a later time the plot pattern turns 

uniformly gray, meaning that the system is now in a state with equipartitioned energy with seemingly no 

dependence on initial conditions and shows a Gaussian distribution of velocities centered around zero. 

Lastly, for the chain with intermediate precompression, a single SW and harmonic waves coexist as can 
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be seen in _g. 3(c). A SW represented by a sharp line in the plot is observed in fig. 3(a), and the gray 

pattern similar to the one shown in fig. 3(e) is also observed. Surprisingly, the SW lives for an extremely 

long time, until at least � = 6.9 × 10S, which is the end of the run. The SW does not attenuate much even 

though it repeatedly collides with the walls. The precompression exerted on the system seems to play an 

important role in suppressing the mechanisms that are associated with the decay of the SW via 

secondarySW formation and this seems to lead to the longevity of the SW. 

Static and dynamic potential energy, and crossover precompression ∆^: The precompression of 

the system is the only parameter varied for each system size in our study of fluctuations of kinetic energy. 

Impact velocity, grain size, grain mass, and all the material properties associated with this investigation 

are kept the same. The precompression is imparted to the system as static potential energy. Hence, the 

effect of precompression is similar to that of an external field that affects the system's dynamics. As we 

have seen above, the SW-acoustic wave coexistence state emerges at a certain precompression value and 

this may be a special state of the system. As argued extensively elsewhere [8], at zero precompression 

approximately 5/9 of the system’s energy turns out to be kinetic and the remaining 4/9 to be potential. 

Such a system when subjected to a single velocity perturbation forms a solitary wave pulse that carries all 

of the system's energy. Precompression changes this behavior. Upon precompression, the system can 

possess more potential energy and when the amount of potential energy due to loading equals that due to 

the Hertzian interaction, a new state forms. In this state, the SW is present but the extra potential energy is 

used to generate acoustic waves which coexist alongside the SW. In _g. 4(a) the potential energy and the 

kinetic energy of the chain are shown as a function of the precompression. The potential energy at high 

precompression, ∆> 10>_,	 ∆> 10>_, is dominated by the precompression and that at low 

precompression, ∆< 10>S, is dominated by the Hertzian interacton.  The coexistence regime begins 

where the the potential energy due to precompression becomes comparable with that due to Hertzian 

interaction. We assume that a way to estimate the strength of loading where the SW and the acoustic 

waves coexist is by defining a ∆^in such a way that potential energy from precompression equals the 

potential energy from Hertzian interactions. The details of this derivation are shown in Appendix A. The 

result of the crossover point is given by  

∆^= Y (
U�4 < L >:[

�/�
,         (5) 

where < L >: is the time averaged kinetic energy of the chain. We perform a numerical calculation of the 

crossover point using the equation and the values obtained in our simulation for ` = 500, < L >:=
5.2 × 10>� from our simulations, then we get ∆^= 1.8 × 10>S. It agrees with our simulation result of 

1.9 × 10>S. Furthermore, the peak shifts shown in fig. 1 can be explained by eq. (5) because the system 

size ` is increased, then the crossover point becomes small, which also explains our simulation results. 
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 The acoustic wave velocity goes up with increasing precompression in the coexistence regime as 

shown in fig. 4(b) and it approaches the solitary wave velocity almost independent of precompression. 

The solitary lives longer and longer as the two velocities come close together. Our investigations suggest 

that the wavelength of the acoustic waves is slightly larger than or of the same length as the typical width 

of the SW. We conjecture that the SWs are hence “invisible" to the acoustic waves and this may be why 

the acoustic waves cannot break down the SWs. However, when the precompression is further increased, 

the situation changes. The wavelength of the acoustic waves become smaller and these waves can now 

\pry open" the SWs which are quite a bit larger than them, thereby making them unstable. This is when 

the system shows acoustic like behavior. 

 

Discussion 

In this study, we have explored the problem of impulse propagation in precompressed grains 

that are held between rigid walls in a granular chain. At vanishingly small and zero loading we find that 

the SW breaks down into the quasi-equilibrium state that is characteristic of strongly nonlinear systems as 

discussed extensively in the literature now. It may be noted that in quasi-equilibrium, the energy is not 

equipartitioned in the system. The velocity distribution is Gaussian and in the case of the single impulse 

problem there appears to be no dependence on initial conditions [7]. When the precompression is 

sufficiently large such that the grains can only oscillate harmonically about their squeezed positions, the 

system behaves like a harmonic chain with N modes where N is the number of particles. Such a system of 

course satisfies the equipartition theorem, shows a Gaussian distribution of velocities and also has no 

dependence on initial conditions and can be regarded as in an equilibrium state. In the ` → ∞ limit 

though the distinction between the quasi-equilibrium and equilibrium phases becomes vanishingly small. 

The striking result of this study is how the SW and acoustic waves coexist in this system for 

values of precompression between the two extremes. To our knowledge such a coexistence phase has not 

been seen in granular chains in earlier work. Here we find that there is a certain value of precompression, 

that depends on the Hertz potential and the system size, around which both the SW and acoustic waves 

coexist. This crossover point appears to be when the average grain-grain separation distance and the 

precompression become equal. Naturally in such a limit, the equation of motion becomes identical to that 

of the equation of motion at zero precompression upto a coupling constant. The wavelength of the 

acoustic waves seems comparable to the width of the SW. However, it remains to be understood why 

these SWs do not break down significantly via secondary SW formation. 
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Task (iv): Here we will focus on studies where we shall explore heterogeneous granular alignments with 

the capability of creating significant hot spots or energy collection regions (Granular Hot Spot Creation 

Problem).  

------------------------------------------------------------------------------------------------------------------------------ 

 

Figure 1: Here we show the time evolution of a 119 grain chain for n=2.5 in (a) and for n=2.1 in (b). 

Multiple perturbations are initiated at t=0. The dark patterns that emerge temporarily are the hot spots 

we were seeking. Further work to classify the intensity of the hotspots is now under way for driven, 

dissipative systems. 
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The granular hot spot creation problem is very much in progress and is likely to be for quite some years. 

This is a challenging problem that is similar to that of the emergence of rogue waves in oceans which 

form unexpectedly and are known to be a threat to vessels.  

The PI and his team acknowledges STIR support for the work done so far which includes 

extensive simulations on the evolution of multiple perturbations initiated at the initial instant in a granular 

chain held between rigid walls. Studies have been done for systems with no dissipation. We found that 

when the initial perturbations are initiated in multiple grains, there is a strong chance that regions with 

very high kinetic energy will emerge unpredictably at late times. These high energy regions in space are 

temporary (see Fig. 1 above). Thus far we have found no way to predict the emergence of such hotspots 

though we find that many perturbations and specific boundaries are needed for these to likely form. 

Substantial progress on this problem is described in the manuscript included with this report which 

appeared in Physical Review E late in 2011 (E Avalos et al, Phys. Rev. 84, 046610 (2011)). The next 

stage work will likely involve an experiment-theory collaboration which is needed for a breakthrough in 

our understanding – this phase is now under development.  
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Task (v): We will build on previous studies on mechanical energy propagation in confined 3D granular 

beds of mono-sized Hertz spheres to extend our code to incorporate the presence of air in interstitial space 

(3D Granular Bed with Air Problem).  

----------------------------------------------------------------------------------------------------------------------------- 

In the STIR proposal, the PI had claimed that work will be started in coding the case of 3D granular 

systems with interstitial fluids in them. This work breaks into new territory in modeling granular beds 

with a molecular fluid in the interstitial spaces where the calculations are done at a length scale of 10s of 

microns to a few millimeters. Matt Westley (PhD student) and the PI initially started this work in close 

dialog with the Livermore geophysics group’s Dr Otis Walton and Dr Eric Herbold. It turned out, 

however, that essentially no progress had been made on this problem that is very useful beyond the work 

of Professor A.J.C. Ladd of the University of Florida, which used hydrodynamic assumptions that mimic 

a dilute, incompressible gas.  

Our work has hence focused on the dynamics of a gas in the interstitial space between grains. The focus 

has been on developing a Molecular Dynamics based calculation scheme that describes a Lennard-Jones 

fluid. The molecules suffer elastic collisions with the walls, which are made of surfaces of the grains that 

define the interstitial space as detailed below.  

1. Introduction 

The properties of energy transmission through granular media are generally not well understood. We 

intend to build a computational model for the propagation of mechanical energy through such materials as 

dirt, mud, and sand. This is to be accomplished by first exploring the simplest case of two grains 

impacting while cushioned by an interstitial fluid (whether air, water, or something else) in full detail. By 

constructing a molecular dynamics simulation from the ground up, we should be able to extract enough 

relevant information to make useful approximations for many grains. These approximations, should they 

be computationally inexpensive enough, will allow us to create a full model for energy propagation 

through large beds of grains with interstitial fluids such as air, water etc. 

2 Current progress 

Thus far we have considered the first part of this study. The molecular dynamics program we use is the 

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), developed by 
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Sandia National Laboratories [1]. With LAMMPS, we have constructed the grain collision as follows: 

Take a large collection of Lennard-Jones (LJ) particles in equilibrium at a known temperature, and cut 

two spheres from this material. These are to be our grains. Then, place these grains in a tube or cylinder 

which is a tight fit around them. (We do this to follow more closely the experimental study by Job et. al. 

[2].) Then, we place an interstitial fluid consisting of single high-temperature light LJ particles inside of 

this cylinder. The grains are then each given an initial velocity towards the center of the cylinder where 

they collide in a head-on collision. 

We record all relevant data from this collision, in particular the force between the two grains (as measured 

by summing the forces between each particle within the clusters) and the overlap between the grains for 

many different runs. Currently a single run involves the collision of two 1500-particle grains at a given 

initial velocity, and takes approximately two minutes of computer time to run with acceptable numerical 

error bounds. The next step is to take all of the data that has been generated in this way and analyze it to 

extract the force law between the two spheres. Ordinarily, we would expect a Hertz law for the sphere 

contact, but the interstitial fluid has proven to have a large effect on the force law [2]. We hope to recover 

the linear approximation made by Job et. al. [2] for this collision. 
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